麻花天美星空糖心

技术文章您的位置:网站首页 >技术文章 > 有源滤波器在矿区配电网中的应用研究与选型
有源滤波器在矿区配电网中的应用研究与选型
更新时间:2023-11-21   点击次数:353次

随着电力电子技术的快速发展,以晶闸管为代表的相控整流装置在矿业生产中得到越来越广泛的应用。然而,相控整流器在运行时会在电网中产生大量谐波,尤其是矿区电网通常位于相对偏远的地区,电网等效阻抗较大,谐波电流的注入会导致机端电压的进一步畸变,严重影响到矿区电网的质量,威胁到敏感用电负荷的安全运行,给整个矿区的生产带来安全隐患。

采用安装无源滤波器的方法一定程度上可实现滤波的作用,但是其滤波效果会受到电网等值阻抗等参数的影响,此外,在参数选择不合适时可能引发谐振,导致滤波器烧毁。与无源滤波器相比,IGBT为开关元件的有源滤波器APF)具有多种优点,比如补偿效果不受电路参数影响、可选次谐波滤除等,近年来在矿区电网中的应用越来越广泛。

为了提高有源滤波器对谐波指令的跟踪精度,目前通常采用基于内模原理的谐振控制器。谐振控制器具有对谐振频率处交流信号无静差跟踪的能力,然而,实际中电网的频率并非固定不变,而是50Hz(对我国电网来讲)附近波动,通常波动范围±0.5Hz。实际中电网频率的波动将导致谐振控制器的频率与实际谐波频率不一致,降低控制器的跟踪能力,进而影响到有源滤波器的谐波补偿效果。为此,本文针对定采样APF控制系统,提出了一种具有电网频率自适应能力的谐振控制器数字算法。由于充分利用了定采样点控制系统的特点,在实现频率自适应的同时,保证了谐振控制算法中参数的常数化,即无需在电网频率变化时对控制参数进行调整,不仅算法简单,而且增强APF对电网频率的鲁棒性*后通过实验验证了改进控制策略的可行性和有效性。

1APF控制系统的数学模型与比例系数设计

APF的主电路及自然坐标系下的电流控制原理如1所示。叁MPR控制器的输出首先与对应相的电网电压叠加在一起构成电网电压前馈,再和叁角载波进行比较生产各开关管PWM信号。

假设叁相系统对称,此时可将叁相系统等效3个独立的单相系统进行建模,A相为例,此时根据1可得自然坐标系APF的输出电流控制框图。

2所示

img1 

1APF系统中电流谐振控制原理

ugaugbugc,叁相电源电LfRf,并网滤波电感及其等值电igaigbigcAPF的叁相输出电Udc、直流侧电MPR、多谐振控制igarefigbrefigcrefAPF的叁相输出电流给定,其中包含了控制直流侧电压平均值恒定所需的有功电流分量和谐波电流指令。

img2 

2自然坐标系APF输出电流控制框图GMPRs

GMPRs):多谐振控制器的传递函数Gds):数字控制PWM调制引入的延时传递函数,通常1.5个开关周GLs)被控对象传递函数,APF输出滤波电感

img3 

Ts——采样周期。

APF1个基波周期的采样点数200,对应的采样周Ts=0.0001s

多谐振控制器的主要作用是在相应谐振频率下提供较大增益,使得系统的稳态误差较小,为了保证系统在暂态过程中的响应速度,实际中应将多谐振控制器与比例控制器并联使用。由于系统的响应速度,即系统的开环穿越频率基本不受多谐振控制器的影响,其主要受比例系数的影响,因此在设计系统开环穿越频率时可以不考虑多谐振控制器,仅仅考虑比例控制器的作用,根据2可得此时系统的开环传递函数为:

img4 

Kp比例系数。

对于数字控制的电力电子变流器,综合考虑系统的稳定裕度和动态响应速度,通常将系统的开环穿越频率设置为采样频率1/10。文APF系统的主要参数:

img5img6 

根据以上参数,结合式1)、式2)和式3)可知,将系统的开环穿越频率设置1kHz时,应取比例系Kp=3.1,此时系统的开bode图如3所示。

img7 

3仅比例控制器APF开环控制系统bode

2传统和改进选振控制器的离散域描述及其电网频率鲁棒性分析

(1)PR控制器的离散域描述及其电网频率鲁棒性分析

单一的谐振控制器能够在其谐振频率下提供较大的增益可大幅提高控制系统对谐振频率下交流信号的跟踪能力。其在s域下可表示为:

img8 

在数字控制系统中,首先要将式4)所描述PR控制算法进行离散化。需要注意的是,不同的离散化算法PR控制器的性能会有较大影响,比如,采用后向差分或双线性变换对式4)进行离散化时会导致谐振峰偏移,且这种影响随PR控制器谐振频率的增大而增大,因此,实际中多采用预修正Tustin变换对式4)进行离散化,从而避免离散化PR控制器谐振峰的偏移。采用预修Tustin变换sz域的映射关系。

img9 

将式5)代入到式4)可得传统谐振控制器的离散域描述

img10 

(6)(7),传统的谐振控制器离散城算法中包含了采样周T、以及谐振频,对于定采样频APF控制系统来,T是不变,PR控制器的谐振频率只与有关。如果在控制中采用恒定,当实际中电网频率出现波动,两者将出现偏差,从而降低谐振控制器的跟踪性能。以谐振频率7次谐波为,PR的幅频特性如4所示。可见当电网频率为理想50Hz时控制器350Hz处具有非常大的增,说明此PR控制器7次谐波的跟踪能力较,但是当电网频率+0.5Hz范围内波动,将导7次谐波的频率+3.5Hz范围内波动。由4中谐振频率附近的放大图可知。随着电网频率的波,PR控制器的增益将发生剧烈变,比如346.5Hz353.5Hz处的增益下降至接0。说明此APF系统7次谐波的跟踪能力大幅下降。可见传统PR控制器对电网频率的鲁棒性较,电网频率微小的波动可能导APF补偿效果大幅下降。

img11 

2)改PR控制器的离散域描述及其电网频率鲁棒性分析

目前并网变流器的数字控制系统主要有定采样频率控制系统和定采样点数控制系2种。对于定采样点数控制系统来讲,即使电网频率发生波动,通过锁相环的调节作用也可保1个工频周期的采样点数不变。为了充分利用固定基波周期采样点数控制系统的特点,此处引入改进PR控制器,其离散域描述为:

img12 

本文APF的控制周期10kHz1个工频周期的采样点n=200。式8)表明,在定采样点数控制系统中,改进PR控制器数字化算法中的所有参数均为常数,即当电网频率存在波动时,不必根据变化后的电网频率PR控制器的谐振频率进行频繁的调节,大大简化了控制系统的结构,实现PR控制器谐振频率与电网频率的自适应。

7次谐波为例,电网频率±0.5Hz范围内波动PR控制器幅频特性的变化如5所示,可见当电网频率50Hz7次谐波频率350HzPR控制器的谐振频率350Hz;当电网频率49.5Hz7次谐波频率346.5HzPR控制器的谐振频率自动减小346.5Hz;当电网频率50.5Hz7次谐波频率353.5HzPR控制器的谐振频率则自动增大353.5Hz。可见电网频率的波动不会影响PR控制器7次谐波处的增益,即不会影APF系统7次谐波的跟踪能力,说明改进PR控制器对电网频率的鲁棒性较强,电网频率的波动不会影APF系统的谐波补偿效果。

img13 

5PR控制器的电网频率鲁棒性分析

3实验验证

为了进一步验证上述理论分析的正确,搭建了额定电流100AAPF实验平,系统开关频率10kHz,即系统1个周波内的采样点数200由于实验条件限,实验中无法对电网频率进行修,鉴于正常工况下电网频率并不是严格50Hz.因此采用对比的方法验证改进谐振控制策略的有效性。将传PR控制谐振频率设定为固定50Hz时的实验结果如6,6可见补偿后的网侧电流虽得到一定程度的改,但是仍含有较大的谐,通过将示波器数据导出MATLAB后分析表,此时网侧电流THD8.3%。作为对,相同工况下采用改PR控制后的实验结果如7,7可见补偿后的网侧电流质量得到明显提,说明具有频率自适应能力的谐振控制算法对给定指令的跟踪能力较,此时网侧电流THD3.7%

上述仿真和实验结果验证了改PR控制算法的有效性。

img14img15img16 

4 安科APF有源滤波器产物选型

4.1产物特点

(1)DSP+FPGA控制方式,响应时间短,全数字控制算法,运行稳定;

(2)一机多能,既可补谐波,又可兼补无功,可251次谐波进行全补偿或特定次谐波进行补偿;

(3)具有完善的桥臂过流保护、直流过压保护、装置过温保护功能;

(4)模块化设计,体积小,安装便利,方便扩容;

(5)7英寸大屏幕彩色触摸屏以实现参数设置和控制,使用方便,易于操作和维护;

(6)输出端加装滤波装置,降低高频纹波对电力系统的影响;

(7)多机并联,达到较高的电流输出等级;

4.2型号说明

img17 

4.3尺寸说明

img18 

img19 

4.4产物实物展示

img20img21 

ANAPF有源滤波器

5安科瑞智能电容器产物选型

5.1产物概述

AZC/AZCL系列智能电容器是应用0.4kV50Hz低压配电中用于节省能源、降低线损、提高功率因数和电能质量的新一代无功补偿设备。它由智能测控单元,晶闸管复合开关电路,线路保护单元,两台共补或一台分补低压电力电容器构成。可替代常规由熔丝、复合开关或机械式接触器、热继电器、低压电力电容器、指示灯等散件在柜内和柜面由导线连接而组成的自动无功补偿装置。具有体积更小,功耗更低,维护方便,使用寿命长,可靠性高的特点,适应现代电网对无功补偿的更高要求。

AZC/AZCL系列智能电容器采用定LCD液晶显示器,可显示叁相母线电压、叁相母线电流、叁相功率因数、频率、电容器路数及投切状态、有功功率、无功功率、谐波电压总畸变率、电容器温度等。通过内部晶闸管复合开关电路,自动寻找适宜投入(切除)点,实现过零投切,具有过压保护、缺相保护、过谐保护、过温保护等保护功能。

5.2型号说明

img22 

AZC系列智能电容器选型:

img23 

AZCL系列智能电容器选型:

img24 

5.3产物实物展示

img25img26 

AZC系列智能电容模AZCL系列智能电容模块

img27 

安科瑞无功补偿装置智能电容方案

6结语

本文首先建立了叁APF的数学模,并对传PR控制器的电网频率鲁棒性进行了分,针对传PR控制器电网频率鲁棒性较低的问题和固定基波周期采样点数控制系统的特点引入了改进PR控制器离散化算,该算法不仅实现PR控制算法中参数的常数化,避免了电网频率变化时对控制算法的频繁调节,而且对电网频率的变化具有自适应性,使PR控制器的谐振频率能够自动追踪电网频率的变化,从而减小电网频率波动APF补偿性能的影响。大幅提高谐振控制器对电网频率的鲁棒性,改善区电网的质量,实验结果验证了改PR控制算法的有效性。

参考文献

[1].SVPWM算法的叁电平有源电力滤波器的电压空间矢量调制策[J].煤矿机,2017,38(8):14-127.

[2],李博,.自适应有源滤波器在矿区配电网中的应用研[J].煤矿机,2020,41(01):145-148.DOI:10.13436/j.mkjx.202001049.

[3]安科瑞公司微电网设计与应用手2022.05.

随着电力电子技术的快速发展,以晶闸管为代表的相控整流装置在矿业生产中得到越来越广泛的应用。然而,相控整流器在运行时会在电网中产生大量谐波,尤其是矿区电网通常位于相对偏远的地区,电网等效阻抗较大,谐波电流的注入会导致机端电压的进一步畸变,严重影响到矿区电网的质量,威胁到敏感用电负荷的安全运行,给整个矿区的生产带来安全隐患。

采用安装无源滤波器的方法一定程度上可实现滤波的作用,但是其滤波效果会受到电网等值阻抗等参数的影响,此外,在参数选择不合适时可能引发谐振,导致滤波器烧毁。与无源滤波器相比,IGBT为开关元件的有源滤波器APF)具有多种优点,比如补偿效果不受电路参数影响、可选次谐波滤除等,近年来在矿区电网中的应用越来越广泛。

为了提高有源滤波器对谐波指令的跟踪精度,目前通常采用基于内模原理的谐振控制器。谐振控制器具有对谐振频率处交流信号无静差跟踪的能力,然而,实际中电网的频率并非固定不变,而是50Hz(对我国电网来讲)附近波动,通常波动范围±0.5Hz。实际中电网频率的波动将导致谐振控制器的频率与实际谐波频率不一致,降低控制器的跟踪能力,进而影响到有源滤波器的谐波补偿效果。为此,本文针对定采样APF控制系统,提出了一种具有电网频率自适应能力的谐振控制器数字算法。由于充分利用了定采样点控制系统的特点,在实现频率自适应的同时,保证了谐振控制算法中参数的常数化,即无需在电网频率变化时对控制参数进行调整,不仅算法简单,而且增强APF对电网频率的鲁棒性*后通过实验验证了改进控制策略的可行性和有效性。

1APF控制系统的数学模型与比例系数设计

APF的主电路及自然坐标系下的电流控制原理如1所示。叁MPR控制器的输出首先与对应相的电网电压叠加在一起构成电网电压前馈,再和叁角载波进行比较生产各开关管PWM信号。

假设叁相系统对称,此时可将叁相系统等效3个独立的单相系统进行建模,A相为例,此时根据1可得自然坐标系APF的输出电流控制框图。

2所示

img28 

1APF系统中电流谐振控制原理

ugaugbugc,叁相电源电LfRf,并网滤波电感及其等值电igaigbigcAPF的叁相输出电Udc、直流侧电MPR、多谐振控制igarefigbrefigcrefAPF的叁相输出电流给定,其中包含了控制直流侧电压平均值恒定所需的有功电流分量和谐波电流指令。

img29 

2自然坐标系APF输出电流控制框图GMPRs

GMPRs):多谐振控制器的传递函数Gds):数字控制PWM调制引入的延时传递函数,通常1.5个开关周GLs)被控对象传递函数,APF输出滤波电感

img30 

Ts——采样周期。

APF1个基波周期的采样点数200,对应的采样周Ts=0.0001s

多谐振控制器的主要作用是在相应谐振频率下提供较大增益,使得系统的稳态误差较小,为了保证系统在暂态过程中的响应速度,实际中应将多谐振控制器与比例控制器并联使用。由于系统的响应速度,即系统的开环穿越频率基本不受多谐振控制器的影响,其主要受比例系数的影响,因此在设计系统开环穿越频率时可以不考虑多谐振控制器,仅仅考虑比例控制器的作用,根据2可得此时系统的开环传递函数为:

img31 

Kp比例系数。

对于数字控制的电力电子变流器,综合考虑系统的稳定裕度和动态响应速度,通常将系统的开环穿越频率设置为采样频率1/10。文APF系统的主要参数:

img32img33 

根据以上参数,结合式1)、式2)和式3)可知,将系统的开环穿越频率设置1kHz时,应取比例系Kp=3.1,此时系统的开bode图如3所示。

img34 

3仅比例控制器APF开环控制系统bode

2传统和改进选振控制器的离散域描述及其电网频率鲁棒性分析

(1)PR控制器的离散域描述及其电网频率鲁棒性分析

单一的谐振控制器能够在其谐振频率下提供较大的增益可大幅提高控制系统对谐振频率下交流信号的跟踪能力。其在s域下可表示为:

img35 

在数字控制系统中,首先要将式4)所描述PR控制算法进行离散化。需要注意的是,不同的离散化算法PR控制器的性能会有较大影响,比如,采用后向差分或双线性变换对式4)进行离散化时会导致谐振峰偏移,且这种影响随PR控制器谐振频率的增大而增大,因此,实际中多采用预修正Tustin变换对式4)进行离散化,从而避免离散化PR控制器谐振峰的偏移。采用预修Tustin变换sz域的映射关系。

img36 

将式5)代入到式4)可得传统谐振控制器的离散域描述

img37 

(6)(7),传统的谐振控制器离散城算法中包含了采样周T、以及谐振频,对于定采样频APF控制系统来,T是不变,PR控制器的谐振频率只与有关。如果在控制中采用恒定,当实际中电网频率出现波动,两者将出现偏差,从而降低谐振控制器的跟踪性能。以谐振频率7次谐波为,PR的幅频特性如4所示。可见当电网频率为理想50Hz时控制器350Hz处具有非常大的增,说明此PR控制器7次谐波的跟踪能力较,但是当电网频率+0.5Hz范围内波动,将导7次谐波的频率+3.5Hz范围内波动。由4中谐振频率附近的放大图可知。随着电网频率的波,PR控制器的增益将发生剧烈变,比如346.5Hz353.5Hz处的增益下降至接0。说明此APF系统7次谐波的跟踪能力大幅下降。可见传统PR控制器对电网频率的鲁棒性较,电网频率微小的波动可能导APF补偿效果大幅下降。

img38 

2)改PR控制器的离散域描述及其电网频率鲁棒性分析

目前并网变流器的数字控制系统主要有定采样频率控制系统和定采样点数控制系2种。对于定采样点数控制系统来讲,即使电网频率发生波动,通过锁相环的调节作用也可保1个工频周期的采样点数不变。为了充分利用固定基波周期采样点数控制系统的特点,此处引入改进PR控制器,其离散域描述为:

img39 

本文APF的控制周期10kHz1个工频周期的采样点n=200。式8)表明,在定采样点数控制系统中,改进PR控制器数字化算法中的所有参数均为常数,即当电网频率存在波动时,不必根据变化后的电网频率PR控制器的谐振频率进行频繁的调节,大大简化了控制系统的结构,实现PR控制器谐振频率与电网频率的自适应。

7次谐波为例,电网频率±0.5Hz范围内波动PR控制器幅频特性的变化如5所示,可见当电网频率50Hz7次谐波频率350HzPR控制器的谐振频率350Hz;当电网频率49.5Hz7次谐波频率346.5HzPR控制器的谐振频率自动减小346.5Hz;当电网频率50.5Hz7次谐波频率353.5HzPR控制器的谐振频率则自动增大353.5Hz。可见电网频率的波动不会影响PR控制器7次谐波处的增益,即不会影APF系统7次谐波的跟踪能力,说明改进PR控制器对电网频率的鲁棒性较强,电网频率的波动不会影APF系统的谐波补偿效果。

img40 

5PR控制器的电网频率鲁棒性分析

3实验验证

为了进一步验证上述理论分析的正确,搭建了额定电流100AAPF实验平,系统开关频率10kHz,即系统1个周波内的采样点数200由于实验条件限,实验中无法对电网频率进行修,鉴于正常工况下电网频率并不是严格50Hz.因此采用对比的方法验证改进谐振控制策略的有效性。将传PR控制谐振频率设定为固定50Hz时的实验结果如6,6可见补偿后的网侧电流虽得到一定程度的改,但是仍含有较大的谐,通过将示波器数据导出MATLAB后分析表,此时网侧电流THD8.3%。作为对,相同工况下采用改PR控制后的实验结果如7,7可见补偿后的网侧电流质量得到明显提,说明具有频率自适应能力的谐振控制算法对给定指令的跟踪能力较,此时网侧电流THD3.7%

上述仿真和实验结果验证了改PR控制算法的有效性。

img41img42img43 

4 安科APF有源滤波器产物选型

4.1产物特点

(1)DSP+FPGA控制方式,响应时间短,全数字控制算法,运行稳定;

(2)一机多能,既可补谐波,又可兼补无功,可251次谐波进行全补偿或特定次谐波进行补偿;

(3)具有完善的桥臂过流保护、直流过压保护、装置过温保护功能;

(4)模块化设计,体积小,安装便利,方便扩容;

(5)7英寸大屏幕彩色触摸屏以实现参数设置和控制,使用方便,易于操作和维护;

(6)输出端加装滤波装置,降低高频纹波对电力系统的影响;

(7)多机并联,达到较高的电流输出等级;

4.2型号说明

img44 

4.3尺寸说明

img45 

img46 

4.4产物实物展示

img47img48 

ANAPF有源滤波器

5安科瑞智能电容器产物选型

5.1产物概述

AZC/AZCL系列智能电容器是应用0.4kV50Hz低压配电中用于节省能源、降低线损、提高功率因数和电能质量的新一代无功补偿设备。它由智能测控单元,晶闸管复合开关电路,线路保护单元,两台共补或一台分补低压电力电容器构成。可替代常规由熔丝、复合开关或机械式接触器、热继电器、低压电力电容器、指示灯等散件在柜内和柜面由导线连接而组成的自动无功补偿装置。具有体积更小,功耗更低,维护方便,使用寿命长,可靠性高的特点,适应现代电网对无功补偿的更高要求。

AZC/AZCL系列智能电容器采用定LCD液晶显示器,可显示叁相母线电压、叁相母线电流、叁相功率因数、频率、电容器路数及投切状态、有功功率、无功功率、谐波电压总畸变率、电容器温度等。通过内部晶闸管复合开关电路,自动寻找适宜投入(切除)点,实现过零投切,具有过压保护、缺相保护、过谐保护、过温保护等保护功能。

5.2型号说明

img49 

AZC系列智能电容器选型:

img50 

AZCL系列智能电容器选型:

img51 

5.3产物实物展示

img52img53 

AZC系列智能电容模AZCL系列智能电容模块

img54 

安科瑞无功补偿装置智能电容方案

6结语

本文首先建立了叁APF的数学模,并对传PR控制器的电网频率鲁棒性进行了分,针对传PR控制器电网频率鲁棒性较低的问题和固定基波周期采样点数控制系统的特点引入了改进PR控制器离散化算,该算法不仅实现PR控制算法中参数的常数化,避免了电网频率变化时对控制算法的频繁调节,而且对电网频率的变化具有自适应性,使PR控制器的谐振频率能够自动追踪电网频率的变化,从而减小电网频率波动APF补偿性能的影响。大幅提高谐振控制器对电网频率的鲁棒性,改善区电网的质量,实验结果验证了改PR控制算法的有效性。

参考文献

[1].SVPWM算法的叁电平有源电力滤波器的电压空间矢量调制策[J].煤矿机,2017,38(8):14-127.

[2],李博,.自适应有源滤波器在矿区配电网中的应用研[J].煤矿机,2020,41(01):145-148.DOI:10.13436/j.mkjx.202001049.

[3]安科瑞公司微电网设计与应用手2022.05.

 


网站地图    &苍产蝉辫;&苍产蝉辫;&苍产蝉辫;技术支持:   

麻花天美星空糖心 热门搜索:电力托管云平台,电力运维管理平台,电力运维管理系统,安科瑞运维云平台
地址:上海市嘉定区育绿路253号